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Abstract

Tempus Fugit/Interview is a computational fluid dynamics
visualization application for which processing is distributed between
high performance graphics workstations and supercomputers. Facilities
are provided in the application for more than one user to view shared
images creating a cooperative visualization environment. The way in
which the computation is partitioned between the supercomputer and
the workstations is critical to the capability of the application to present
simultaneous, identical, animated images of fluid dynamics to more
than one user.
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1. Introduction

The increased capabilities of supercomputers have been used to dramatically
increase the size and complexity of numerical simulations of fluid flow [16]. As the
size of the simulations increase, the size of the flow solution data also increases and
can result in immense data sets representing the physical characteristics of a flow
field. The greatest impediment to developing systems for visualization of three-
dimensional, unsteady fluid flow is the size of the data, which constrains interactive
response time.

As applications utilize the advanced features of high-performance graphics
workstations to visualize complex time-dependant data, the individual scientist is
presented with more and more information-laden images. Animated images created
by such visualization applications are not transportable beyond the workstation
without some loss of informational content. Consequently, sharing the information
acquired during the visual analysis process among collaborating scientists is
difficult.



The visualization of unsteady fluid flow presents two connected problems: how to
provide interactive exploration capability over extremely large data sets and how to
make the exploration a process which can be shared with another scientist.

This paper examines the architecture of Tempus Fugit (“time flies”), a tool for
visualizing unsteady fluid flow. Processing in Tempus Fugit is distributed between a
high performance graphics workstation and a supercomputer. Images of fluid flow
characteristics are animated over the time dimension of the time-dependant,
unsteady fluid flow solution data. The companion program, Interview, provides
facilities to share the supercomputer computational environment with a second
workstation, creating a cooperative visualization environment.

The first part of the paper will describe the requirements imposed by shared
visualization of large time-dependent data sets in a distributed environment of
supercomputers and graphics workstations. The second part of the paper will
analyze the architecture of computer conferencing applications and distributed
visualization applications. The next part of the paper will analyze the architecture
and implementation of Tempus Fugit/Interview. Finally, concluding remarks on
architectural choices end the paper.

2. Background

Despite advances in the delivery of computational power to users of high-
performance graphics workstations, there remain visualization applications for
which the computational requirements can only be met by supercomputers.
Distributed processing is used to provide the user with the combined capabilities of a
high performance graphics workstation and a supercomputer under the control of a
single application [7, 20]. The supercomputer’s capabilities of great processing
power, large memory, large disk storage, and fast disk access are necessary to
contain, access, and calculate over, the large data sets endemic to unsteady fluid flow
analysis. The high speed graphics of the workstation transform numerically
calculated data into high resolution animated images of fluid flow features. The
human-machine interface, also provided by the workstations, adds mechanisms for
controlling the analytical tools of the visualization system.

The high resolution, three-dimensional, color, animated images which are the result
of the visualization process are not transportable beyond the workstation without
some loss of informational content. Much of the three-dimensional character of the
images is lost without the capability to perform interactive view transformations.
Recording the animated images using video is limited by the resolution of NTSC
video encoding and eliminates interactive capability. Color printing or photography
is comparable in color resolution and in some cases is superior in image resolution to
the workstation graphics monitor. However, much of the information to be analyzed
is in the animation of the images and cannot be captured with still images.



The lack of transportability of these images makes it difficult to communicate the
results of the visualization process to collaborators, which in turn makes the
collaboration process that much more difficult. A cooperative visualization tool,
which would allow users on separate workstations to simultaneously view the
images as they are created, would create a shared environment for analyzing the
images and facilitate the dialog so important to collaboration.

Recently developed computer tools which facilitate collaboration have shown that a
WYSIWIS (“what you see is what I see”) interface is valuable. This type of interface
provides for the “presentation of consistent images of shared information to all
participants” [25, 26]. Such an interface to a visualization application would allow
scientists to see and interact with each other’s work through their workstations.
Visualization, then, becomes a communication medium and the graphics workstation
a platform for the exchange of ideas.

One model of a collaborative environment is represented in the simple diagram in
figure 1 [22]. While conversation is serial and ephemeral in nature, shared space is
substantial and provides another medium for communication.
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Figure 1: Collaborative Environment Model.

Shared access to information makes symbolic representation more concrete. Stefik,
et al. use the chalkboard as a metaphor for a shared space for information storage
[26]. The idea of WYSIWIS follows somewhat from this basic model.

With typical visualization applications a single user is “alone” with the data and the
images which are the result of the visualization process. When an interesting image
is produced on the graphics monitor, it’s common in our laboratory to call co-workers
to the monitor to see what has been produced. With the shared view of the monitor,
the collaborative environment outlined above is created (figure 2). Collaborators
who are in another building or another city however, cannot participate in this
interaction.
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Figure 2: “Gather Around” Collaborative Environment.

Tempus Fugit/Interview builds on the basic model to provide an environment where
distance is not a deterrent to creating the collaborative environment. For Tempus
Fugit/Interview, the shared space resides on the supercomputer and the images are
rendered on separate graphics workstations (figure 3).
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Figure 3: T empus Fugit/Interview Collaborative Environment.



3.  The Computational Fluid Dynamics Application

One of the main objectives of the Numerical Aerodynamic Simulation (NAS)
Program at the National Aeronautics and Space Administration (NASA) Ames
Research Center is the provision of a comprehensive computing environment to
facilitate computational aerodynamics and fluid dynamics research [2]. To this end,
the NAS Processing System Network (NPSN) was developed. The NPSN contains a
wide range of computer systems, including several supercomputers (Convex C3240,
Cray 2 4/256, Cray YMP 8/256, Intel IPSC 860, TMC 32K CM2) and an array of
Silicon Graphics IRIS workstations. Several networks provide connectivity and a
basis for network development and research. These networks include Ethernet,
UltraNet, and FDDI.

Recent computational fluid dynamics (CFD) research at NAS has produced data sets
for which interactive visualization is, due to the data size, beyond the capabilities of
currently available visualization packages. Visualization of data sets of the
magnitude of those described in Table 1 stress the computational resources of even
the best equipped computer centers. It has been suggested that visualization of
these large data sets involves tradeoffs among time, space and flexibility constraints
[13].

Total Solution Size | Saved Total Size

Data Set Zones (MB) Per Time| Time

Nodes (GB)

Step Steps
STOL w/ Thrust Reversers [6] 4 983,366 18.76 | 9000 168.8
SOFIA Airborne Observatory [1] 35| 3,314,575 63.22 100 6.3
Complete STOVL Aircraft [24] 18| 2,833,700 54.05 100 5.4
Tapered Cylinder [15] 1 131,072 2.50 800 2.0

Table 1: Representative Unsteady Fluid Flow Data Sets

CFD research can be divided into three steps: grid generation, numerical
simulation, and post-process analysis. A numerical grid is created describing an
object and the surrounding space. Flow solvers calculate physical properties of the
flow at the nodes of the grid.

A typical data set consists of a grid file and one or more solution files. Typical grids
consist of one or more zones constructed over a curvilinear coordinate system. These
zones may overlap. The grid file contains the x-, y-, and z-coordinate values of the
grid nodes mapping the nodes to Cartesian space. Solution files contain the values
for density, energy, and momentum for each grid node. Density and energy are
scalar values while momentum is a three-dimensional vector. A steady state
solution data set contains a grid file and a solution file. An unsteady solution data



set contains a grid file and a solution file per time step.

An example of a multiple zone grid is shown in figure 4 for a complete short take-off
and vertical landing (STOVL) aircraft [24]. Figure 4A shows a wire frame of a single
zone of the grid with cross hairs on the surface nodes. Figure 4B shows crosshairs
for all of the exterior nodes of the zone to illustrate the grid density and the
curvilinear nature of the grid layout. The zone consists of 75,330 nodes, while the
entire grid consists of 2,833,700 nodes. Figure 4C wire frames for the zones which
contain the aircraft surface and finally, figure 4D shows all eighteen zones in wire
frame.

From the density and energy scalar fields and momentum vector field, other scalar
and vector fields can be calculated. The widely used PLOT3D CFD visualization tool
developed by Pieter Buning [33] provides facilities for building fields for about one
hundred different scalar and vector functions and provides the model for many CFD
visualization tools. The FAST CFD visualization tool provides a scalar and vector
field calculator as well as a number of built-in functions [3].

A variety of visualization techniques can be applied to these scalar and vector fields
for post-process analysis. These include particle paths, isoscalar surfaces, cutting
planes, and topology. Graphics techniques are applied to color, shade, light, project
and otherwise render images on the workstation monitor.

4.  Architecture
4.1  Computer Conferencing Architecture

Systems which provide the infrastructure for developing computer conferencing
applications usually make the choice between a centralized or a replicated
architecture (figure 5) [8, 17, 19]. This choice is predicated on a desire to require
minimal modification to single user applications when operated in a computer
conference or cooperative environment.

A single instance of the application is used in the centralized architecture with a
conference manager which coordinates the I/O between the clients and the
application. An instance of the application per client is used in the replicated
architecture. The conference manager in the replicated architecture is interposed
between the client and the application in the input stream.

A major issue in the difference between these two architectures is the ability to
provide both shared and private contexts while maintaining consistent state. The
centralized architecture is simpler but unable to provide the capability of
maintaining both shared and private contexts without modification of the underlying
application. The replicated architecture is a flexible architecture but presents the
difficulty of maintaining consistent state across all replicants. In both architectures






the conference manager implements the distribution of processing over the network.

Computer conferencing architectures involve distributed processing to distribute
locality. The output of an application is distributed to more than one location.
Distributed processing can also be used to acquire resources that are not locally
available, such as the acquisition of supercomputer resources from a workstation. A
distributed visualization application is an example of this latter use of distributed
processing.
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Application Application
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Figure 5: Computer Conferencing Architectures.

4.2  Distributed V isualization Application Architecture

The CFD visualization process can be understood as the transformation of data
(figure 6). Visualization techniques are applied to the scalar and vector fields, which
make up the raw data, to form geometry data. Geometry data is rendered to form
image data.

Distributed processing can be applied to the visualization process by partitioning the
computational tasks between a supercomputer and high performance graphics
workstations. How this partitioning is accomplished will determine the ability of the



visualization system to provide an environment which best utilizes the capabilities
of the graphics workstations, the supercomputer, and the network.
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Figure 6: V isualization Process.

Figure 7 illustrates several possible partitions: the distributed file system partition,
the geometry partition, the distributed graphics library partition, and frame buffer
partition. Looking at the visualization process as a whole, the distributed file
partition imports the input from a remote machine, while the frame buffer partition
exports the output to a remote machine. The distributed graphics library and
geometry partitions separate local and remote tasks at the point of graphics
processing.

The use of distributed file systems such as Network File System (NFS) [21] is often
given as an example of distributed processing. For a visualization application, the
raw data resides on the server machine and is made available for graphics
processing on the workstation client. Using distributed processing in this manner
allows the client to utilize the disk resources of the server. Another example of this
type of partition is when a server process creates the raw data and delivers it
directly to a client process. In CFD visualization this method has been used to
preview data as it is produced by a flow solver. Intermediate solutions are produced
by a flow solver and transferred over the network to a visualization application
instead of being written to disk.

A small advantage in saving disk access time and space is gained from this
distributed file system partition. However, for a visualization application this
partition of processing would only utilize the high disk-to-memory speed of the
supercomputer, leaving the computationally intensive processing of the data to the
workstation. To gain the benefit available by distributing processing it is essential
that the transformation of raw data to geometry data be carried out on the
supercomputer.

For the frame buffer partition, all of the processing is accomplished on one machine
and the image is transferred to another for display. The image can be transferred as
pixel image data or further transformed into video [12,14].

This has been found to be useful in that the image display takes place at a different
machine and location than the calculation and rendering of the image, diminishing a
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requirement of geographical proximity of the user to the machine which is carrying
out the calculation.

Transfer of images can turn out to be quite a large amount of data to transfer over
the network, perhaps 24 bits per pixel by 1024 by 1280 pixels per frame. The data
transfer rate, at 24 frames per second, would then be approximately 90 MBytes per
second. Maintaining this transfer rate to two or more workstations or frame buffers
in a cooperative effort would be difficult. Using video transmission can decrease the
volume of data to be transferred but only at the cost of greatly reducing the quality of
the images.

While the advent of high speed networks in the gigabit-per-second range [5, 11]
removes a potential bottleneck in the performance of these distributed applications,
high speed networks are not a panacea. Even though some networks may be capable
of transferring data at a rate of one gigabit-per-second, it will be some time before
workstations are capable of transferring or receiving data at that speed. Even so,
image data transfer at animation speeds would be difficult to sustain.

The distributed file system partition and the frame buffer partition allow the entire
visualization process (figure 6) to be accomplished on one machine with either the
raw data being imported from a remote machine or the output exported to a remote
machine. These two partitions require minimal modification to applications
implemented to operate only in a non-distributed environment to allow the
applications to operate in a distributed environment. The tradeoff for ease of
implementation is a limitation in the flexibility to utilize the combined processing
power of the supercomputer and graphics workstation.

A third distributed processing partition is at the transformation of geometry data to
image data found in the distributed graphics library partition. The raw data is
processed and formatted to form geometry data. The graphics routines transform
the geometry data into images. The sequence of graphics library calls may
themselves be transferred over the network and executed on another machine. This
partitioning has the advantage that the programming effort is carried out on the
computation machine (supercomputer) and graphics calls made as though the image
creation was local even though it its carried out on another machine. A special
distributed graphics library [23] which implements all of the necessary network
transactions is used. Network window systems are also an example of the utilization
of the distributed graphics library type of partition [18].

The distributed graphics library partition is designed to have minimal impact on the
basic design of an application which is being modified to distribute processing. This
partition also has limited flexibility. While the use of a distributed graphics library
partitions the computation in a way which utilizes the strengths of the
supercomputer and of the graphics workstation, it is often advantageous to be able to
use distributed processing which does not involve graphics. This ability is
unfortunately not available with the distributed graphics library approach.
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Interactions which control the production of images from the geometry data require
network transactions with a distributed graphics library partition. The network
transactions and the associated processing overhead can be reduced by moving the
geometry data to the workstation. With this geometry partition, the entire
rendering process can then be completed on the workstation without involving the
network for transferring command information or data. The geometry partition is a
very flexible framework for distributed visualization applications. Unlike the
distributed graphics library partition, the geometry partition separates network
processing from graphics processing. Herein lies the flexibility to carry out
distributed processing functions without involving graphics.

The geometry partition allows the rendering controls to the visualization process to
be completely local to the graphics workstation. If the geometry data for an entire
animation can be contained on the workstation, the entire viewing process of an
animation including view transformations, color manipulation and other rendering
controls is completely local to the workstation and does not incur any network
transaction overhead.

4.3 Combined Architecture

To combine the ability of the distributed visualization application to distribute
compute intensive and memory consumptive operations to a supercomputer with a
computer conferencing architecture requires some architectural modification. To
adopt a centralized architecture would perhaps be the most straight forward as the
conference manager could continue to manage all network traffic. The inability of
providing both shared and private contexts remains a problem with this
architecture. The replicated architecture would require network transactions to be
somehow interposed in the output stream as well as the input stream to allow the
application to be operated on the supercomputer.

In order to combine the flexibility of the geometry partition with a computer
conferencing architecture a hybrid of the centralized and replicated architectures
was developed (figure 8). The computationally intensive transformation of raw data
into geometry data is centralized into a process on the supercomputer. The
transformation of geometry data to images is replicated on the graphics
workstations. This hybrid architecture allows for both shared and private contexts
for rendering control since that portion of the application is replicated. Maintenance
of consistent state is simplified by the centralized portion of the application, which
controls the transformation of raw data to geometry data using visualization
techniques.
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Figure 8: Geometry Partition with Hybrid Conferencing Architecture

5. Implementation

Tempus Fugit is a stand-alone application for visualizing unsteady fluid flow which
uses a geometry partition to distribute processing. Interview is a companion
program to Tempus Fugit which replicates the geometry data to image data
transformation on a second graphics workstation.

5.1  Distribution of Computation

The main vehicle for distributing computation between supercomputers and
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workstations in Tempus Fugit/Interview is Distributed Library (dlib) [30]. Like
many systems which provide for distributed processing, dlib is based on the remote
procedure call (RPC) model [4, 10, 27, 29]. However, unlike most of these systems,
dlib was developed to provide a service which allows for a conversation of arbitrary
length within a single context between client and server. The dlib server process is
designed to be capable of storing state information which persists from call to call, as
well as allocating memory for data storage and manipulation. While RPC protocols
are frequently likened to local procedure calls without side effects, dlib more closely
resembles the extension of the process environment to include the server process.

Dlib provides utilities for automatic stub generation to handle the transfer of the
information necessary to execute the routine in the remote environment. Due to the
persistent nature of the remote environment, dlib is able to coordinate allocation and
use of remote memory segments and provide access to remote system utilities.

Dlib was originally designed on a model of one client to one server. To allow multiple
clients to share the server process environment, the dlib server was modified to
accept more than one connection. Each connection is selected for service by the
server process in the sequence that the dlib calls are received. The dlib calls are
executed by the server in a single process environment as though there were only
one client. With this modification, dlib becomes the conference manager for the
centralized resource which executes on the supercomputer. An additional
communication path between the two clients allows the input streams to be shared
for the replicated portions of the application.

5.2  Tempus Fugit

Tempus Fugit is a stand-alone application for visualizing unsteady fluid flow. The
transformation of raw data to geometry data by the application of various
visualization techniques is accomplished on the supercomputer and controlled by a
mouse-driven interface on the workstation. The geometry data is transferred over a
connection to the dlib client on the workstation where time-sequenced animated
images are produced as in the geometry partition described above. This dlib client
will be referred to as the Tempus Fugit client.

The process of selecting a visualization technique to be applied, transforming raw
data to geometry data, transferring the geometry data to the workstation, and
rendering the data into an animated image can result in an animation containing a
number of visual elements. Figure 9 shows several grid surfaces, two dimensional
slices through the curvilinear grid, and several isosurfaces over subranges of the
grid, surfaces of constant scalar value, for the velocity magnitude of flow about a
tapered cylinder [15]. The series of frames at the bottom of the figure gives an idea
of the animation of the scene.
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5.3 WYSIWIS

The Tempus Fugit client will have been active for an arbitrary length of time when
Interview is invoked. As such, the image the Tempus Fugit client is presenting may
contain a number of visual elements. Interview creates a connection to the dlib
server on the supercomputer and to the Tempus Fugit client. The Tempus Fugit
client maintains a list of descriptions of the visual elements it is currently viewing.
Upon request this list is sent to the Interview client. From this list, the Interview
client has the information to transfer the geometry data from the server process
using dlib calls in the same way that the Tempus Fugit client received the data.

The Interview client is now able to present images created from the same geometry
data as the Tempus Fugit client. Interactive controls for view transformations and
animation sequencing are individual to each client. Consequently, the two clients at
this point are viewing the same three-dimensional geometry data but may have
different viewing perspectives.

The ability to individually view the same geometry data is analogous to two people
looking at a three-dimensional object, say, an open book. One person can see the title
and author on the front cover, while the other can read the pages. While their views
are different, there is a shared context for conversing.

To present an identical image on both monitors simultaneously, rendering controls
such as view transformations and animation sequencing must be consistent. The
graphics transformation matrix controls the mapping between geometry data and
the screen representation. In order for identical images to be viewed by both clients,
the rendering control information of one client is sent to the other client. The
receiving client loads the transformation matrix into its graphics pipeline creating
an image identical with the viewing perspective of the sending client. The animation
sequencing information is used to synchronize the animation frame by frame.

Each client has a set of mouse-driven view transformation controls for rotation, pan,
and zoom. To see what is being presented by the other client “tracking mode” is
selected. This results in a message sent to the other client to begin sending the
rendering control information. The other client continuously updates the rendering
control information until tracking mode is deselected and “detached mode” is
entered. While in tracking mode, view transformation controls are disabled. While
in detached mode, the client is able to control the viewing perspective (Figure 10).

When the geometry data is transferred to two workstations, the basis for sharing the
information has been established. The rendering portion of the application is
replicated by the two clients. With a copy of the geometry data, each workstation
can render images distinct from the other workstation in a private context. By
exchanging the rendering control information the two workstations can generate
identical images in a shared context. There is in a sense two levels of sharing which
can be implemented with the hybrid conferencing architecture: sharing the geometry
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data and sharing rendering controls such as view transformations.
5.4  Current Status and Future W ork

A prototype has been implemented which targeted single zone data sets such as the
tapered cylinder [15]. The raw data for this prototype resided on the
supercomputer’s disk. The transformation of raw data to geometry data included
extracting portions of the raw data from disk. The efficiency of the system was
highly dependent on disk performance and varied greatly depending on distribution
of the required data on disk.

Unfortunately, a disk distribution optimization for one visualization technique
conflicts with an optimization for another visualization technique. In the prototype,
sample data is organized to have time dimensions of data arrays ordered
sequentially on disk. This optimizes disk reads over spatial subsets for such
visualization techniques as grid surfaces, cutting planes, and isosurfaces over
subsets of the grid. Integral curve visualization techniques perform best with a disk
organization with the spatial dimensions of data arrays ordered sequentially.
Additional work is required to find an organization for disk-resident data which is
effective for both types of visualization techniques. Management of the data through
the hierarchy of data storage devices was identified as a major issue effecting
efficiency and interactive performance.

The prototype was sucessful in demonstrating the hybrid conferencing architecture
could provide an efficient framework for sharing the interactive exploration of
extremely large data sets. Tracking mode was found to be especially effective with
this architecture. The transformation matrix and other rendering control
information are very compact and can be transferred between workstations well
within the animation frame rate of between ten and thirty frames per second on
networks of modest speed such as Ethernet. By replication of the process required to
transform geometry data into images, only the rendering control information need be
transferred between the workstations to provide the WYSIWIS function.

A second prototype is currently being developed which targets multi-zone data sets.
It has been observed that for many of these large data sets the area which contains
the interesting features of the flow is concentrated in a small percentage of the total
gridded volume. A flexible subsetting tool has been developed which interactively
extracts spatial and temporal subsets, controlling the size of the subset to fit in
available supercomputer memory. Using this approach allows the visualization
techniques to be applied to the raw data without accessing the disk and acquiring
the concomitant delay. It is hoped that the tool will concentrate the speed mismatch
between disk access and interactive visualization to a single set-up operation
without diminution of exploratory capability.
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0. Conclusion

The way in which computation is partitioned between constituent processors is an
important design consideration for distributed and cooperative applications. Many
applications have been implemented for use on a single machine before it becomes
desirable to operate the application in a distributed and/or cooperative environment.
For an application such as the visualization of CFD, processing can be partitioned in
ways which require minimal modification to a single processor implementation.
However, such partitions are limited in their ability to take advantage of the full
range of facilities available in a distributed environment.

The advocacy for either a centralized or replicated architecture for computer
conferencing applications is predicated on a desire to require minimal modification
to single-user applications. While these architectures are effective for distributing
locality, it is difficult to utilize these architectures in a way which also acquires the
computational advantages available through distributed processing. Efficiencies in
the passing of control, in providing shared and private contexts, and in providing
computational services, should guide which elements should be a centralized
resource and which should be replicated. The hybrid architecture presented above
provides the flexibility to utilize distributed processing to garner the computational
resources required to interactively explore extremely large data sets while providing
the ability to share the exploration process.
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